Biomimetics and Biomimicry in Engineering

Lab diaries: Multifunctional microstructures

In Comment on 2017/12/12 at 1:18 pm

We have created new structures that provide comfortable accommodation for bone-forming cells. We seeded them, puffed up their pillows, fed them with their favourite food and drink and waited. The other day we went to check on them. This one looks particularly pleased!

Mock up

When we fixed the cells we found this shape, decorated with eyes (prob debris from the desiccating chemicals) which we have decorated with a tie

We are functionalising surfaces to tune them to chemical bio markers and embedding intelligence to create active structures and welcoming new homes for cell cultures. Attention to detail: we even decorate their sitting spaces with flowers



Mechanical behaviour that mimics that of cortical and trabecular bones

In Publications on 2017/11/30 at 11:22 am

We have published our most recent results on how porosity and pore size affect both mechanical properties and biological response of osteoblastic cells on titanium porous structures.

Working with volumetric porosities that match those of cortical and trabecular bone, we finely controlled the pore size in the substrate with the aim to assess how a variation in pore size can tailor mechanical properties (i.e. stiffness and strength). Furthermore, we report how we could establish regressions that would allow us to create a design tool based on porosity, so it would return the desired mechanical properties values.

From a bioengineering viewpoint, the results from this study showed that scaffolds with the lowest pore range (45-106um) presented the largest number of cells attached in the early days  (day 1 and  3) indicating this microarchitecture was the best indicated for cell attachment. Pore range >300 mm exhibited the most favourable conditions for cell proliferation, surpassing those on the control samples. The viability of scaffolds with pore size 212-300um was the poorest, indicating these scaffolds do not promote cell proliferation for osteosarcoma osteoblasts due to the distance the cells had to span.


Proliferation data from the osteoblasts on titanium porous (A,B 1-4) and non-porous (Ti) normalised to the previous timepoint of culture (in/in-1, n=3, 7, 12); as it appears in

The study can be found here in the Materials Science and Engineering C: Materials for Biological Applications.

Removing mass with maths

In Comment on 2017/11/14 at 3:02 pm

We are creating lightweight materials by removing mass from where it is not needed and adding it to places subjected to high loads and strains. It is Drawing with Maths

“[The Universe] is written in the language of mathematics, and its characters are triangles, circles and other geometrical figures, without which it is humanly impossible to understand a single word of it” —Galileo Galilei, The Controversy on the Comets, 1618