Biomimetics and Biomimicry in Engineering

Posts Tagged ‘Healthcare’

Engineered foams for wheelchair seating

In Publications on 2017/11/08 at 10:39 am

We have published the results arising from our studies on open cell polymeric foams that can be tailored so that they support those who are bed bound or wheelchair users providing them with general well being and alleviating pressure points.

Avoiding pressure points, managing sores and permitting air permeability are the three main design specifications that clinicians aim to when choosing a cushion. In addition to that, a functional cushion, such as those who support lateral movements (e.g. leaning sideways to grab a glass of water and be helped to return to your initial position without compromising one’s stability) and protect from vibration and impacts (e.g. dropping off a curb), are the focus of our research project.

The Multifunctional Materials Lab and clinicians from the NHS have studied how we can help their clinician colleagues understand cushion performance and therefore aid them with the prescription of these to patients and users.

The results from our study have been published in the Medical Engineering and Physics Journal and in the Assistive Technology Journal .

The International Standard that regulates developments in this topic is the ISO16840-2:2007, which is currently under revision. We are hoping our work to inform their work and assist in their revisions for the replacement ISO 16840-2.

iso_replacement

 

Advertisements

Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications

In Publications on 2017/11/03 at 11:04 am

Our most recent results on the importance of tailoring porosity engineered materials for cell regeneration are to be published in the Journal of Alloys and Compounds.

Porous scaffolds manufactured via powder metallurgy and sintering were designed for their structure (i.e. pore size and porosity) and mechanical properties (stiffness, strength) to be controlled and tailored to mimic those of human bone. The scaffolds were realised to fulfill three main objectives:

(i) to obtain values of stiffness and strength similar to those of trabecular (or spongy) bone, with a view of exploiting these as bone grafts that permit cell regeneration,

(ii) to establish a relationship between stiffness, strength and density that allows tailoring for mass customisation to suit patient’s needs; and

(iii) to assess alloy cytotoxicity and biocompatibility via in vitro studies.

The results obtained using a very low stiffness alloy (Ti35Nb4Sn) further lowered with the introduction of nominal porosity (30–70%) with pores in the ranges 180–300 μm and 300–500 μm showed compatibility for anatomical locations typically subjected to implantation and bone grafting (femoral head and proximal tibia). The regression fitting parameters for the linear and power law regressions were similar to those found for bone specimens, confirming a structure favourable to capillary network formation. Biological tests confirmed non-cytotoxicity of the alloy.

Scaffolds of porosity nominal 50%vol and pore range 300–500 μm performed best in the adhesion and propagation assays due to a good balance between surface area and pore cavity volume.

Graphical abstract for https://doi.org/10.1016/j.jallcom.2017.10.026

Study on bio-mechanical properties of porosity scaffolds tailored for cell regeneration, https://doi.org/10.1016/j.jallcom.2017.10.026

A pre-view of the article appears on Journal of Alloys and Compounds, Volume 731, 15 January 2018, Pages 189-199, https://doi.org/10.1016/j.jallcom.2017.10.026.

 

The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds

In Publications on 2017/10/27 at 8:49 am

The Multifunctional Materials Lab has recently published our results on porosity tailored titanium scaffolds. The results were very interesting and demonstrated there is more to what the eye can see in a first pass: cells are extremely sensitive to cavities and ‘think’ about whether they should bridge a gap or simply fill the hole.

Our article can be found here

The effect of pore size and porosity on elastic modulus, strength, cell attachment and cell proliferation was studied for Ti porous scaffolds manufactured via powder metallurgy and sintering. Porous scaffolds were prepared in two ranges of porosities so that their mechanical properties could mimic those of cortical and trabecular bone respectively. Space-holder engineered pore size distributions were carefully determined to study the impact that small changes in pore size may have on mechanical and biological behaviour. The Young’s moduli and compressive strengths were correlated with the relative porosity. Linear, power and exponential regressions were studied to confirm the predictability in the characterisation of the manufactured scaffolds and therefore establish them as a design tool for customisation of devices to suit patients’ needs. The correlations were stronger for the linear and the power law regressions and poor for the exponential regressions. The optimal pore microarchitecture (i.e. pore size and porosity) for scaffolds to be used in bone grafting for cortical bone was set to < 212 μm with volumetric porosity values of 27–37%, and for trabecular tissues to 300–500 μm with volumetric porosity values of 54–58%. The pore size range 212–300 μm with volumetric porosity values of 38–56% was reported as the least favourable to cell proliferation in the longitudinal study of 12 days of incubation.

https://doi.org/10.1016/j.msec.2017.03.249

Cells are sensitive to small changes in pore size and some are even detrimental to their proliferation. https://doi.org/10.1016/j.msec.2017.03.249

Published in Materials Science and Engineering: C, Volume 77, 1 August 2017, Pages 219-228, https://doi.org/10.1016/j.msec.2017.03.249

Congratulations to Fares!

In Info on 2017/04/11 at 6:57 pm

My PhD student Fares Almushref successfully defended his PhD thesis entitled ‘Design and manufacture of engineered titanium-based materials for biomedical applications’.

Congratulations to him for the hard work for the last 3 years and the great effort to get it finished in time for the summer graduation.

Fares

Applying International Standards to manage comfort

In Publications on 2017/03/01 at 6:46 pm

Have you ever seen the seat testing device at IKEA? We have used a very similar one in our study.

ikea_durability_test

IKEA durability test

Open cell polymeric foams can be tailored so that the support provided and the level of stability is customised to people’s needs. For those who are bed bound or wheelchair users the selection of a cushion can improve their health and general well being. Avoiding pressure points, managing sores and permitting air permeability are the three main design specifications that patients and clinicians aim to when choosing a cushion. In addition to that, a functional cushion, such as those who support lateral movements (e.g. leaning sideways to grab a glass of water and be helped to return to your initial position without compromising one’s stability) and protect from vibration and impacts (e.g. dropping off a curb), are the focus of our last research project.

My team and I have had the privilege to work with the biomechanics and physiotherapists at the SMART Centre at Astley Ainslie Hospital in Edinburgh to study how we can help their clinician colleagues understand cushion performance and therefore aid them with the prescription of these to patients and users.

The results from our study have been presented at the PMG 2012 Conference and recently published by the Assistive Technology journal (free e-prints can be collected here). This has allowed us to interact with the community that is preparing the new version of the ISO16840-2:2007 which will regulate developments in this area.

 

Assisting mums-to-be in water and house births

In Info on 2014/06/12 at 7:05 pm

The medical device we designed to help midwives monitor labour with minimum interruption has seen the light! Different newspapers and media have been attracted to our invention, a team effort from our colleagues in Univ of Edinburgh and NHS, Heriot-Watt University, and us in Loughborough.

This has been a great enterprising opportunity for us. Being able to form a team with engineers, designers, medics and business developers has been truly rewarding. We all showed great enthusiasm and reached out to understand each others’ ‘language’ so we could bring the project to a fruitful completion. Working with midwives for the development of a new medical device was great because they were able to provide us with insightful input during the design stages, and with useful feedback in the development phase.  We hope the device will help the midwives carry out their work in more comfortable conditions, and for future mothers-to-be to benefit from this device that allows them to experience a more dignifying labour.

The work has been presented at the Perinatal Medicine 2014 (Harrogate International Centre, Monday 9th – Wednesday 11th June 2014).

The press releases can be found here and here

More press material can be found here and here and here.

Engineered metal implants to target cancer cells and eradicate side effects of chemotheraphy

In Publications on 2014/03/06 at 12:12 am

The work done by my colleague Dr Asier Unciti-Broceta and our ‘dream team’ has been published in Nature Communications.

Asier proudly presents to the world the work done using his clever “bioorthogonal” method for activating a prodrug by palladium catalyzed dealkylation. What motivates us is to move towards the eradication of the side effects of chemotheraphy (e.g. depleted immune system, hair loss, tiredness, etc) in the very near future. This is done by focusing the cancer treatment only to the affected area. Like a ‘trojan horse’, in our vision we implant the engineered catalyst carrier first. Then, by a selective activation via oral drugs, we produce the chemo-destructive effect with maximum effect on the targeted area, and minimal negative effects (i.e. death) on healthy tissue.

The technology in a 'nutshell'

The technology in a ‘nutshell’

The full paper can be found here.

The press release by University of Edinburgh can be viewed here.

Asier is an academic fellow at the Edinburgh Cancer Research UK Centre at the MRC Institute of Genetics and Molecular Medicine, the University of Edinburgh.

Making sense of standardisation

In Publications on 2013/11/18 at 12:27 am

Standardisation is that useful process that allows us engineers to share a common ‘plane of reference’ on which to base our conversations. It is useful to know that a material (say, a slab of titanium) has the same mechanical properties when it is measured in Loughborough, Sydney, Lima or Granada.

But sometimes standardisation goes too far on the other extreme. The over-translation from observation to technical definitions might turn an ISO norm into a document that is no longer useful for practical purposes. This is particularly risky when ISO norms attempt to tabulate and measure in ‘softer’ areas such as healthcare and rehabilitation.

In a piece of work recently published here, my colleagues from the NHS Scotland SMART Centre and we have restated some practical insight to an ISO norm that guides the characterisation of wheelchair cushions for a better guidance to prescription by clinicians.

Our work has been well received by the practising community and we look forward to continue working with them.

Ref: Hollington J., Hillman S.J., Torres-Sanchez C., Boeckx J., Crossan N., “ISO 16840-2:2007 load deflection and hysteresis measurements for a sample of wheelchair seating cushions”, Medical Engineering & Physics, in press. DOI:10.1016/j.medengphy.2013.10.010 

Meet the midwife!

In Knowledge Transfer on 2013/07/17 at 1:23 pm

And we met a lot of them! on the 28th June we visited the NHS Lothian’s Birth Centre, at the Royal Infirmary of Edinburgh, under the facilitation of our team leader, Dr Fiona Denison. We showed the practising midwives our designs and mock-ups and obtained user-specs from this first workshop of the ‘Waterbirthing Mirror’.

Workshop user-group at the Birth Centre

Workshop user-group at the Birth Centre

It was wonderful to see so many people with so much experience and enthusiasm willing to give us comments, ideas and feedback.
Thanks to Fiona and her team for making our stay so comfortable in their superb facilities at the Birthing Centre.

Water, mirrors, babies and Lego

In Knowledge Transfer on 2013/07/13 at 12:18 pm

These are Natacza and Mark. They are my Summer 2013 Design Team.

Natacza & Mark adventures

Natacza & Mark

Natacza and Mark are working on the ‘Mirror for waterbirths’ project, a collaboration among the Universities of Edinburgh, Heriot-Watt and Loughborough, along with the NHS Lothian, and sponsored by the Edinburgh and Lothians Health Foundation.

This is them doing some lego brainstorming for mechanisms and functional features.

lego_brainstorming

Concept generation well underway. The most difficult bit was explaining the guy at the airport why we were carrying those mock-ups in our hand-luggage.