Biomimetics and Biomimicry in Engineering

Posts Tagged ‘porous materials’

A manufacturing protocol for the production of biocompatible porous catalysts

In Publications, Seminars and Keynotes on 2018/02/09 at 2:23 pm

Mohammad Alqahtani, researcher of the Multifunctional Materials Lab, is conducting research to develop a new manufacturing method and testing protocol for the fabrication of biocompatible catalyst-carrier for controlled drug delivery. The carrier could be used as a prodrug activation agent when implanted in cancerous tissues in the human body. When orally-ingested drugs are deployed into the area under treatment through the blood stream, the catalyst could activate the prodrugs and these affect the area by releasing anticancer treatment. In this research, a titanium-based carrier was used to manufacture the medical device due to their biocompatibility and non cytotoxicity.

In a feasibility study, the samples were made as porous carriers.  Porous materials have larger surface area than solid materials. Therefore, when the contact area between the drug and the carrier increases this has a potency effect on the effectiveness of the drug.

His work has been presented recently

20170608_ma_poster-wolfsonconf1.jpg

This work is a continuation of the research work already presented here and published here and here.

Advertisements

Functionally-Tailored Cellular Structures

In Publications, Seminars and Keynotes on 2018/01/10 at 1:41 pm

Many applications in science and engineering can benefit from the control of porosity
gradients. Producing heterogeneous materials allows the properties of that material to
be tailored more specifically to the requirements, reducing resource consumption and
weight. A designed microstructure is able to produce similar strength and stiffness values to a homogenous material at a reduced weight by removing discontinuities between phases where stress concentrations occur.

Joe Holt, researcher of the Multifunctional materials Lab, studying at the EPSRC Centre for Doctoral Training in Embedded Intelligence and co-sponsored by FAR UK Ltd, has presented our work on functionally tailored cellular structures via topology optimisation.

20170701_joe_poster.png

A tailored cellular structure is realised by topology optimisation of a volume loaded
in compression. The optimisation is set-up to incorporate a full spectrum of densities
of the parent material, as to simulate a cellular solid of varying density. The resulting
structure is produced by ultrasound sonication of a polyurethane foam system during
the foam rise. Targeted sonication power and frequency allows the manipulation of
density in specific regions, producing a finished structure with a density profile representing the results of the topology optimisation.

Snowflakes

In Comment on 2017/12/21 at 12:56 pm

Wilson A. Bentley (1865-1931). This gentleman studies the formation of snowflakes under varied conditions of temperature, pressure and relative humidity.

With rather low-tech scientific apparatus (i.e. a simple microscope and rudimentary equipment to control temperature, pressure and % humidity), he created hundreds, if not thousands, of snow crystals. He coined the sentence “no two snowflakes are the same”.

If it is snowing where you are now, look out of the window and pay attention to the snowflakes. It is not that all the different snowflakes that you see falling from the sky are all absolutely unique and different. His claim means that, under specific atmospheric and physical conditions (i.e. T, P, %hum, altitude, etc), one and only one type of snow crystal will form, and then fall onto the ground.

These images are original photographs taken by Bentley himself using his microscope. The crispness of the images is breathtaking and the beauty of the fractals extraordinary. Enjoy! For example, when snowflakes crystallises with the shape of a tube or a needle, fall to the ground and form a layer of snow on a mountain, that layer may be the precursor in the formation of avalanches.

Bentley’s pioneering work has helped geophysicists and engineers understand ice formations and how to prevent catastrophes. However, there are many questions still unsolved! Snowflakes grow as thin plates, but if the temperature varies only a few degrees, they evolve into long thin crystals. No one knows why.

This last image belongs to a collection from SnowCrystals.com and a beautiful classification of the different types of snowflakes can be seen here.

Lab diaries: Multifunctional microstructures

In Comment on 2017/12/12 at 1:18 pm

We have created new structures that provide comfortable accommodation for bone-forming cells. We seeded them, puffed up their pillows, fed them with their favourite food and drink and waited. The other day we went to check on them. This one looks particularly pleased!

Mock up

When we fixed the cells we found this shape, decorated with eyes (prob debris from the desiccating chemicals) which we have decorated with a tie

We are functionalising surfaces to tune them to chemical bio markers and embedding intelligence to create active structures and welcoming new homes for cell cultures. Attention to detail: we even decorate their sitting spaces with flowers

IMG_0124

Mechanical behaviour that mimics that of cortical and trabecular bones

In Publications on 2017/11/30 at 11:22 am

We have published our most recent results on how porosity and pore size affect both mechanical properties and biological response of osteoblastic cells on titanium porous structures.

Working with volumetric porosities that match those of cortical and trabecular bone, we finely controlled the pore size in the substrate with the aim to assess how a variation in pore size can tailor mechanical properties (i.e. stiffness and strength). Furthermore, we report how we could establish regressions that would allow us to create a design tool based on porosity, so it would return the desired mechanical properties values.

From a bioengineering viewpoint, the results from this study showed that scaffolds with the lowest pore range (45-106um) presented the largest number of cells attached in the early days  (day 1 and  3) indicating this microarchitecture was the best indicated for cell attachment. Pore range >300 mm exhibited the most favourable conditions for cell proliferation, surpassing those on the control samples. The viability of scaffolds with pore size 212-300um was the poorest, indicating these scaffolds do not promote cell proliferation for osteosarcoma osteoblasts due to the distance the cells had to span.

Proliferation_supplementary

Proliferation data from the osteoblasts on titanium porous (A,B 1-4) and non-porous (Ti) normalised to the previous timepoint of culture (in/in-1, n=3, 7, 12); as it appears in https://www.ncbi.nlm.nih.gov/pubmed/28532024

The study can be found here in the Materials Science and Engineering C: Materials for Biological Applications.

Removing mass with maths

In Comment on 2017/11/14 at 3:02 pm

We are creating lightweight materials by removing mass from where it is not needed and adding it to places subjected to high loads and strains. It is Drawing with Maths

“[The Universe] is written in the language of mathematics, and its characters are triangles, circles and other geometrical figures, without which it is humanly impossible to understand a single word of it” —Galileo Galilei, The Controversy on the Comets, 1618

Engineered foams for wheelchair seating

In Publications on 2017/11/08 at 10:39 am

We have published the results arising from our studies on open cell polymeric foams that can be tailored so that they support those who are bed bound or wheelchair users providing them with general well being and alleviating pressure points.

Avoiding pressure points, managing sores and permitting air permeability are the three main design specifications that clinicians aim to when choosing a cushion. In addition to that, a functional cushion, such as those who support lateral movements (e.g. leaning sideways to grab a glass of water and be helped to return to your initial position without compromising one’s stability) and protect from vibration and impacts (e.g. dropping off a curb), are the focus of our research project.

The Multifunctional Materials Lab and clinicians from the NHS have studied how we can help their clinician colleagues understand cushion performance and therefore aid them with the prescription of these to patients and users.

The results from our study have been published in the Medical Engineering and Physics Journal and in the Assistive Technology Journal .

The International Standard that regulates developments in this topic is the ISO16840-2:2007, which is currently under revision. We are hoping our work to inform their work and assist in their revisions for the replacement ISO 16840-2.

iso_replacement

 

Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications

In Publications on 2017/11/03 at 11:04 am

Our most recent results on the importance of tailoring porosity engineered materials for cell regeneration are to be published in the Journal of Alloys and Compounds.

Porous scaffolds manufactured via powder metallurgy and sintering were designed for their structure (i.e. pore size and porosity) and mechanical properties (stiffness, strength) to be controlled and tailored to mimic those of human bone. The scaffolds were realised to fulfill three main objectives:

(i) to obtain values of stiffness and strength similar to those of trabecular (or spongy) bone, with a view of exploiting these as bone grafts that permit cell regeneration,

(ii) to establish a relationship between stiffness, strength and density that allows tailoring for mass customisation to suit patient’s needs; and

(iii) to assess alloy cytotoxicity and biocompatibility via in vitro studies.

The results obtained using a very low stiffness alloy (Ti35Nb4Sn) further lowered with the introduction of nominal porosity (30–70%) with pores in the ranges 180–300 μm and 300–500 μm showed compatibility for anatomical locations typically subjected to implantation and bone grafting (femoral head and proximal tibia). The regression fitting parameters for the linear and power law regressions were similar to those found for bone specimens, confirming a structure favourable to capillary network formation. Biological tests confirmed non-cytotoxicity of the alloy.

Scaffolds of porosity nominal 50%vol and pore range 300–500 μm performed best in the adhesion and propagation assays due to a good balance between surface area and pore cavity volume.

Graphical abstract for https://doi.org/10.1016/j.jallcom.2017.10.026

Study on bio-mechanical properties of porosity scaffolds tailored for cell regeneration, https://doi.org/10.1016/j.jallcom.2017.10.026

A pre-view of the article appears on Journal of Alloys and Compounds, Volume 731, 15 January 2018, Pages 189-199, https://doi.org/10.1016/j.jallcom.2017.10.026.

 

Manufacturing Functionality: from SFF to truly SFF

In Seminars and Keynotes on 2016/04/05 at 8:13 pm

Solid Free Form (SFF) fabrication, also known as Rapid prototyping (RP) or Layered Manufacturing (LM), creates arbitrary 3D shapes directly from Computer-Aided Design (CAD) data. It has been around for two decades now. From its early age it demonstrated tremendous advantages for the Computer-Aided Manufacturing (CAM) industry compared to traditional manufacturing methods such as CNC machining or casting. The venues for exploration appeared endless until users started to hit a ceiling; the name ‘rapid’ became almost ironic because the layering process is a very slow one, the palette of materials to handle is limited and the advertised label ‘net-shape’ is ‘near-shape’ – on a lucky day-. We are now over the hype of SFF, RP and LM but still have needs to create heterogeneous structures that have intrinsic multifunctionality. The Multifunctional Materials Manufacturing Lab in Loughborough University works on new manufacturing methods that allows a truly free form fabrication and the engineering of composition and structure for the creation of materials that are smart, responsive to their environment and possess synergistic properties that enhance their behaviour. These types of high performance materials offer great promise in fields such as bioengineering and transport (i.e. automotive and aerospace).

Venue: Department of Physics, Universitá degli Studi di Milano, Aula Consiglio. Italy

20160405_UnivdegliStudidiMilano

Lightweighting

In Funding on 2016/02/24 at 2:58 am

Lightweight materials are the next pit-stop in the challenge of reducing mass, curbing emissions and improving fuel economy in the low carbon vehicles of tomorrow.

UK’s ambitious commitment to decarbonisation of the transport industry by 2050 is going to require a creative approach. Current reductions have been gained by improvements in engine performance but these gains are diminishing. If we were to go 100% electric, we still need to produce the electricity, so the footprint is not necessarily diminished as much as it could appear. To meet the carbon emissions target we need to reduce vehicle mass. For example, a car the size of a Ford Focus would need to reduce mass by about 300kg (from ~1200kg to ~900kg).  The car industry needs to find a way to manufacture lightweights without adding production cost in the shorter term.

Loughborough University and Far UK Ltd, a Nottingham-based innovative low-volume tailored vehicle designer and manufacturer, have joined forces to explore the concept of novel and engineered structures, multifunctional materials bespoke for their mechanical properties, and manufactured in a cost-benefit and continuous fashion using Sonication technology that allows on-demand tailoring of porosity. This exciting research program has just secured co-funding from the UK’s innovation agency, Innovate UK.

This programme of research presents a new avenue for high value manufacturing and helps support the UK knowledge base, economy and jobs.

TSB_announcement

We have been in the press here and here