Biomimetics and Biomimicry in Engineering

Mathematical Modelling of the use of Ultrasound to Tailor Polymers

In Info, Seminars and Keynotes on 2015/01/27 at 12:13 pm

Materials whose internal porosity can be tailored during the manufacturing process could be of use in a wide range of applications such as bone scaffolds (to help new bone grow from stem cells).  A recent method for achieving such a manufacturing process involves the acoustic irradiation of a reacting polymer foam which then results in a final sample with a graded porosity.  This talk will present the first mathematical model of this process. The polymerisation process is complex involving, for example, bubble dynamics, evolving rheology, two phases, reaction kinetics, and gas diffusion.  In addition, the model has to include the effects of the irradiating ultrasound.  The model I will present treats the evolving fluid as a multimode Oldroyd B system and will focus on a single moving bubble boundary using a Lagrangian frame of reference.  After looking at the role that inertia has on the dynamics of the system, a multi-bubble model is constructed that generates a heterogeneous bubble size distribution shaped by the ultrasonic standing wave pattern.

My colleague Dr Tony Mulholland, from the Department of Mathematics and Statistics, University of Strathclyde, will present this remarkable piece of work on the 27th January 2015 at 1pm in venue: S.1.73 (Materials Department, Loughborough University). Join us if you can.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: